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Abstract

A kink is a singular surface across which the displacement is continuous but the deformation gradient and the fibre
direction suffer a discontinuity. A kink band is a highly deformed or even damaged region bounded by two kinks. The
objective of modelling kink-band formation, within the framework of finite elasticity theory, is to find a suitable strain–
energy function, guided by results from a finite number of simple experiments, that can be used to predict what have
been observed and what might be possible under other loading conditions. In this paper, we explain a theoretical basis
for choosing such strain–energy functions. More precisely, for a given strain–energy function that allows formation of
kinks and a given deformation field, we characterize all possible deformation fields that can join the given deformation
field through a kink and explain a procedure that can be used to assess the stability properties of any kink solution that
is mathematically possible. In contrast with most previous studies in the engineering community where, for instance, the
kink orientation angle is undetermined, the present theory completely determines the kink propagation stress, the kink
orientation angle and the fibre direction within the kink band.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is now widely recognized that kink-band formation and propagation is the dominant compression fail-
ure mechanism in unidirectionally fibre-reinforced composites. Typically, when such a composite with an
initial imperfection is compressed, the load curve consists of an initiation (peak) stress followed by a much
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lower steady propagation stress; see, for instance, Sutcliffe and Fleck (1994), Kyriakides et al. (1995),
Moran et al. (1995), Sivashanker et al. (1996), Liu et al. (1996), Moran and Shih (1998), and Vogler and
Kyriakides (1999, 2001). The initiation stress is known to be quite sensitive to imperfections such as initial
waviness or misalignment of fibres and fibre breakage due to micro-buckling, but the constant propagation
stress, at which the kinked fibres ‘‘lock-up’’ into a fixed orientation and the kink band may propagate stea-
dily, seems to be a material property independent of such imperfections. For various engineering theories
that are aimed at predicting the initiation stress, the propagation stress, the kink orientation angle and the
fibre direction within the kink band, we refer the reader to Yin (1992), Grandidier et al. (1992), Guynn et al.
(1992), Budiansky and Fleck (1993, 1994), Chung and Weitsman (1995), Schapery (1995), Dao and Asaro
(1996), Fleck (1997), Jensen and Christoffersen (1997), Kyriakides and Ruff (1997), Vogler and Kyriakides
(1997), Budiansky et al. (1998), Berbinau et al. (1999), Hsu et al. (1999), Jensen (1999), Drapier et al. (2001),
Vogler et al. (2001), and the references therein. We also mention the papers by Hunt et al. (2000) and
Wadee et al. (2004) that are concerned with kink-band instability in layered structures in which sliding
is permitted between the layers. Because kink banding in the latter layered structures can be initiated much
more easily, the experimental and analytical results given by the last two papers do not suffer the diversity
and uncertainty associated with those results on traditional fibre-reinforced composites. We believe that
their results are indicative of what might be expected in traditional fibre-reinforced composites in an ide-
alized situation (that is without any imperfections): kink-band formation, unlike Eulerian buckling, is
not an incremental process; rather, it is dynamic and the kinked configuration is an energetically preferred
configuration that cannot be reached from the initial configuration by a quasi-static loading process. This
point of view is consistent with the established view in the engineering community that kink-band forma-
tion is initiated, through imperfections, by a limit-load instability, and the load against end-shortening
curve typically has the unique snap-back behaviour (compare Fleck�s, 1997, Fig. 12(b) with Hunt et al.�s,
2000, Fig. 3).

A unidirectionally fibre-reinforced composite can be modelled as a transversely isotropic elastic material.
Although a rational continuum mechanics theory for such composites has been in existence for more than
three decades, see Spencer (1972), and despite its success in solving a large number of boundary-value prob-
lems, it is only recently that a first attempt has been made in using this theory to explain kink-band forma-
tion; see Merodio and Pence (2001a,b), Merodio and Ogden (2002, 2003a,b, 2005).

Following Merodio and Pence (2001a,b), we also view kink-band formation as a phase transformation
problem. Although plastic deformation usually occurs inside a kink band, as long as unloading does not
take place, we may view the materials inside and outside the kink band as two phases of the same elastic
material.

Once kink-band formation is viewed as an elastic phase-transformation problem, we may then draw
upon the vast expertise that has accrued during recent decades on the modelling of stress induced phase
transformations. The most attractive feature of this approach is that we only need to find an appropriate
strain–energy function. Once such a strain–energy function is found, no ad hoc approximations need to be
made and all the required results, such as the kink propagation stress, the kink orientation angle and the
fibre direction within the kink band, follow as mathematical consequences.

It is now known that a necessary condition for a stress-induced phase transformation (and hence
kink-band formation) to be possible is that the strain–energy function, as a function of the deformation
gradient, losses strong ellipticity at some deformation gradients; see Knowles and Sternberg (1978). Strong
ellipticity of transversely isotropic materials has been the focus of some recent studies; see Qiu and Pence
(1997), Merodio and Pence (2001a,b), Merodio and Ogden (2002, 2003a,b, 2005), and Walton and Wilber
(2003).

A major difference between the present study and the studies of Merodio and Pence (2001a,b) is that in
our present study the Maxwell relation (i.e., zero kink-driving traction) is used as an equilibrium condition,
whereas in Merodio and Pence (2001a,b) satisfaction of the Maxwell relation is viewed as corresponding to
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neutral stability and this relation does not play as an important role as in our study. In fact, it is through the
use of this relation that we are able to determine completely the kink propagation stress, the kink orien-
tation angle and the fibre direction within the kink band. In this respect, our approach follows that of
Freidin and Chiskis (1994a,b), Freidin et al. (2002) and Fu and Freidin (2004) in their studies of stress-
induced phase transformations, and bears the same spirit as that of Hunt et al. (2000) who use the Maxwell
relation as a stability criterion. In this connection, we also mention a recent study by Jensen (1999) where a
work-balance relation WI = WE is used in the determination of the orientation angle of kinked fibres at
lock-up, where WI is the work done per unit volume by the stresses in the kink band and WE is the work
done per unit volume by the external loads as the kink band broadens. Since the Maxwell relation can be
interpreted as a necessary condition for the total energy to be stationary with respect to perturbations of the
kink position in the undeformed configuration (see, for instance, Abeyaratne, 1983), a possible connection
between the Maxwell relation and Jensen�s (1999) work-balance relation may exist and remains to be
established.

We observe that in the recent studies by Merodio and Ogden (2002, 2003a,b, 2005), marginal violation of
the strong ellipticity condition is viewed as corresponding to fibre kinking. This point of view has also pre-
viously been adopted by some researchers in the engineering community; see, e.g., Christoffersen and Jensen
(1996). Clearly, these studies are concerned with the prediction of the initiation/peak stress corresponding to
the onset of failure, and the normal to the kink predicted by such theories is simply the normal to a charac-
teristic surface (a weak discontinuity surface) which may not be the normal to a fully developed, steadily pro-
pagating kink which is a strong discontinuity (shock) surface. In the present study, our concern is not with the
initiation stress. Instead, our main concern is with the prediction of the kink propagation stress, the kink ori-
entation angle and the fibre direction in a fully developed kink band. Such a fully developed kink band cor-
responds to a fully nonlinear solution of the governing equations and may develop, under large amplitude
perturbations, well before the strong ellipticity condition is violated even in the absence of imperfections.

The rest of this paper is organized into four sections as follows. After stating the governing equations in
Section 2, we show in Section 3, using a simple model energy function, how the kink orientation angle and
the deformation field in the kink band can be determined completely with the use of the jump conditions
that must be satisfied across an equilibrium kink. A good theoretical model should also be able to predict
what is observed in experiments. Thus, if a fully developed kink band is observed to be stable with respect
to small-amplitude perturbations, our model should at least predict stability with respect to Weierstrass-
type perturbations and interfacial perturbations. Stability with respect to the former requires satisfaction
of the ellipticity (or Legendre–Hadamard) condition by the deformation gradient throughout the elastic
body. We satisfy this requirement by imposing the slightly stronger assumption of strong ellipticity. Stabil-
ity with respect to interfacial perturbations is discussed in Section 4 where we derive a simple formula as a
test criterion and carry out some illustrative calculations. The paper is concluded with a summary and some
additional comments.
2. Governing equations

In this paper, we are concerned with a macroscopic description of unidirectionally fibre-reinforced com-
posites, that is, we take the fibres and matrix material as a whole continuum and we assume that its con-
tinuum mechanical behaviour is known. We view a kink in a fibre-reinforced composite as a strong
discontinuity surface, or equivalently a static shock, across which the displacement field is continuous
but the deformation gradient suffers a discontinuity. Let the static deformation of a fibre-reinforced com-
posite be given by
x ¼ xðXÞ; ð2:1Þ
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which assigns position x to the material point that occupies position X in the undeformed (reference)
configuration. We assume that x and X have coordinates xi and XA, respectively, relative to a common rect-
angular coordinate system. We shall follow the convention that lower case subscripts are associated with
the coordinates of x and upper case subscripts with the coordinates of X. The jump of a function f across
a kink is defined by
½f � ¼ f þ � f �; ð2:2Þ

where superscripts ‘‘+’’ and ‘‘�’’ signify evaluation at the kink as it is approached from the two sides
respectively. To avoid using double superscripts, we shall replace a superscript ‘‘+’’ or ‘‘�’’ by the corre-
sponding subscript on quantities that have already another superscript. Thus, for instance, f+ and g2

þ both
signify evaluation on the ‘‘+’’ side of a kink. When there is no ‘‘+’’ or ‘‘�’’ superscript/subscript attached to
a field variable evaluated at the kink, it means that the variable can be evaluated on either side of the kink.
In most of our analysis, the ‘‘+’’ and ‘‘�’’ sides take the same footing, but to fix ideas, we may take the ‘‘+’’
side to correspond to the kink-band side; see Fig. 1.

The behaviour of an incompressible elastic body is completely described by its strain–energy function W
which is taken to be a C2 function of the deformation gradient F. Thus, we write W = W(F), where
F ¼ ox

oX
; F iA ¼ xi;A; ð2:3Þ
and a comma signifies partial differentiation. The first Piola–Kirchhoff stress tensor p is given by
pT ¼ oW
oF
� pF�1; piA ¼

oW
oF iA

� pF �1
Ai ; ð2:4Þ
where p is the pressure associated with the constraint of incompressibility. The equilibrium equation is
given by
DivpT ¼ 0; piA;A ¼ 0; ð2:5Þ

and its weak form is
½pN� ¼ 0; ½piANA� ¼ 0; ð2:6Þ

where N denotes the unit vector normal to the kink in the reference configuration and points from the ‘‘+’’
phase into the ‘‘�’’ phase. The jump condition (2.6) expresses continuity of traction across the kink.

It is well-known that continuity of displacement implies that the jump [F] may be written as
½F� ¼ f �N; ð2:7Þ
n

+

Fig. 1. A typical kink band in a unidirectionally fibre-reinforced composite under compression.
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where f, defined by
f ¼ ½F�N; ð2:8Þ
may be referred to as the amplitude of the jump in [F]. We also impose the additional condition
½W � � f � pN ¼ 0; ð2:9Þ
which will be shown in Section 4 to be necessary for the energy functional to be stationary with respect to
perturbations of the kink position in the reference configuration (see, e.g., Abeyaratne, 1983). Any static
deformation containing a kink must satisfy the equilibrium equation (2.5) away from the kink and must
satisfy the jump conditions (2.6), (2.7) and (2.9) across the kink.

It is found to be more convenient to express the jump conditions (2.6), (2.7) and (2.9) in terms of the
Cauchy stress tensor r = FpT and the unit normal n to the kink in the deformed configuration. We then
have
½F� ¼ ðc� nÞF� ¼ ðc� nÞFþ; ð2:10Þ

½r�n ¼ 0; ð2:11Þ

½W � � c � rn ¼ 0; ð2:12Þ
where
c ¼ 1

jFTnj
f. ð2:13Þ
We note that FTn, and hence c, are continuous across the kink. This follows from Nanson�s formula
FTnda = NdA, where dA and da are two corresponding area elements in the undeformed and deformed
configurations, respectively. The counterparts of (2.10)–(2.13) for compressible materials were the basic
relations employed by Freidin et al. (2002) in studying stress-induced phase transformations (see also Fu
and Freidin, 2004).

The elastic moduli Aþ
jilk and A�

jilk are defined by
Aþ
jilk ¼ F þjAF þlB

o2W
oF iA oF kB

����
F¼Fþ

; A�
jilk ¼ F �jAF �lB

o2W
oF iA oF kB

����
F¼F�

. ð2:14Þ
The experimental results of Kyriakides et al. (1995), Moran et al. (1995) and Moran and Shih (1998) show
that when a kink band is fully developed, the kinks may propagate at a constant stress known as the prop-
agation stress. Using the terminology of theory of phase transformations, we may also refer to the prop-
agation stress as the Maxwell stress. We view a fully developed kink band as being neutrally stable
(Ericksen, 1975) in the sense that as the kink-band broadens, the total energy of the elastic body remains
the same but is less than the energy of any other perturbed configuration. Thus, the kink band which we try
to model should be stable at least with respect to Weierstrass-type perturbations (see Cherkaev, 1991, p.
151) and interfacial perturbations. Stability with respect to Weierstrass-type perturbations is guaranteed
by strong ellipticity in both ‘‘+’’ and ‘‘�’’ phases:
A�
jilkcjdicldk > 0 for all nonzero vectors c and d satisfying c � d ¼ 0. ð2:15Þ
Stability with respect to interfacial perturbations will be discussed in Section 4. It is analogous to satisfac-
tion of the complementing condition at a free surface or at the interface between two welded dissimilar elas-
tic bodies (see Simpson and Spector, 1989, 1991; Mielke and Sprenger, 1998).
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3. A model strain–energy function and kinked solutions

It is well-known (see, e.g., Spencer, 1972) that the strain–energy function W for a generally incompress-
ible, transversely isotropic material depends on the four invariants defined by
I1 ¼ trC; I2 ¼ trC�1; I4 ¼ A � ðCAÞ ¼ a � a; I5 ¼ A � ðC2AÞ ¼ a � Ba;
where C = FTF, B = FFT, a = FA, and A is the unit vector along the fibre direction in the undeformed con-
figuration. From r = FoW/oF � pI, we obtain
r ¼ 2ðW 1 þ W 2I1ÞB� 2W 2B2 þ 2W 4ða� aÞ þ 2W 5ða� Baþ Ba� aÞ � pI; ð3:1Þ
where W1 = oW/oI1,W4 = oW/oI4, etc. In this study we consider a class of incompressible fibre-reinforced
composites that is modelled by the strain–energy function
W ¼ 1

2
ðI1 � 1Þ þ 1

2
c1ðI4 � 1Þ2 þ 1

3
c2ðI4 � 1Þ3; ð3:2Þ
where c1 and c2 are material constants and we have scaled the energy function such that the first term does
not contain a material constant. The second term involving c1 above has previously been used by
Triantafyllidis and Abeyaratne (1983), Qiu and Pence (1997), Merodio and Ogden (2002, 2003a) to account
for the existence of a unidirectional reinforcing in an otherwise isotropic matrix material. We observe that
the term involving c2 in (3.2) breaks the symmetry in the strain–energy function with respect to extension
(I4 � 1 > 0) and compression (I4 � 1 < 0) along the fibre direction. We use this term to reflect the fact that
in the large deformation regime, a typical unidirectionally fibre-reinforced composite does respond differ-
ently under compression from when it is under tension along the fibre direction.

Corresponding to (3.2), Eq. (3.1) reduces to
r ¼ Bþ 2fc1ðI4 � 1Þ þ c2ðI4 � 1Þ2gða� aÞ � pI. ð3:3Þ

We shall focus on the simplest case when the deformation is plane-strain, the X1-axis is along the unde-
formed fibre direction, and F� takes the simple form
F� ¼
k 0

0 k�1

� �
; ð3:4Þ
where k is a constant. This deformation may be viewed as the deformation before any kink band has
formed. Our first task is to determine at what values of k, as it is varied away from unity, formation of kinks
first becomes possible.

To the above end, we first assume that a kink with normal n = (n1,n2)T has already formed. This kink
joins F� given by (3.4) and F+ that is to be determined. From (2.10) and the incompressibility condition
detF± = 1 it may be deduced that c Æ n = 0. Thus, we may write
c ¼ km; where m ¼ ðn2;�n1ÞT ð3:5Þ

and k is to be determined. We note that the trivial solution k = 0 is always a solution, but we are looking for
a fully nonlinear nontrivial solution (that is, k is not necessarily small).

In terms of k, the unknown F+ can be calculated with the aid of (2.10) and [r] can be evaluated with the
aid of (3.3). The jump conditions (2.11) and (2.12) give us three scalar equations that can be used to deter-
mine the three unknowns k, n1 and p+. For an arbitrary choice of the strain–energy function, it is quite
possible that these three equations do not have any real solutions at all. It is now known from the theory
of phase transformations that a necessary condition for such a real solution to exist is that the strain–energy
function loses strong ellipticity for some deformation gradients. Even when this condition is satisfied, a real
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solution can be found only for some admissible values of k. Our first task is to characterize such admissible
deformations.

By eliminating [p] from the two scalar equations obtained from (2.11), we obtain [r1i]nin2 � [r2i]nin1 = 0.
To facilitate subsequent analysis, we define a function L through
k�2Lðk; n;mÞ � 1

k
½r1i�nin2 � ½r2i�nin1f g ¼ 1

k
½r1i�nim1 þ ½r2i�nim2f g. ð3:6Þ
With the use of (2.10), (3.3) and (3.5), we find
Lðk; n;mÞ ¼ 1� 4k6n4
1c1 þ 8k6n4

1c2 � 8k8n4
1c2

þ n2
1 �2k4 þ 6k6
� �

c1 þ ð�1þ k2Þð1þ k2 þ 2k4ð�1þ 5k2Þc2Þ
� �

þ k �8k8n5
1n2c2 þ 2k6n3

1n2ð3c1 þ 2ð�3þ 5k2Þc2Þ
� �

þ k2 2k6n4
1c1 þ 4k6ð�1þ 5k2Þn4

1c2 � 16k8n6
1c2

� �
þ 10k3k8n5

1n2c2 þ 2k4k8n6
1c2 ¼ 0. ð3:7Þ
This is a quadratic equation in terms of k. It can be shown with the aid of Mathematica that the jump con-
dition (2.12), after division by k2, yields another quartic equation for k:
3� 12k6n4
1c1 þ 24k6n4

1c2 � 24k8n4
1c2 þ 3n2

1ðð�2k4 þ 6k6Þc1 þ ð�1þ k2Þð1þ k2 þ 2k4ð�1þ 5k2Þc2ÞÞ

þ kð�16k8n5
1n2c2 þ 4k6n3

1n2ð3c1 þ 2ð�3þ 5k2Þc2ÞÞ

þ k2ð3k6n4
1c1 þ 6k6ð�1þ 5k2Þn4

1c2 � 24k8n6
1c2Þ þ 12k8n5

1n2c2k3 þ 2k8n6
1c2k4 ¼ 0. ð3:8Þ
With the aid of the command Resultant in Mathematica, it can be shown that these two polynomial equa-
tions for k will have a common root only if
Lð0; n;mÞf ðk2; n2
1Þgðk

2; n2
1Þ ¼ 0; ð3:9Þ
where the functions f and g are defined by
f ðx; yÞ ¼1� y þ x4y � 2x4yc1 þ 2x6yc1 þ 2x4yc2 � 4x6yc2 þ 2x8yc2;

gðx; yÞ ¼64c2
2 � 72ð�1þ xÞx4y4c3

2ð1þ xþ 2x2c1 þ 2ð�1þ xÞx2c2Þ
� 6x3y3c2ð�ðx2c3

1Þ þ 42ð�1þ xÞx2c2
1c2

þ 4c2
2ð3ð4� x� 4x2 þ 2x3Þ þ 2ð�1þ xÞ2x2ð�11þ 5xÞc2Þ

þ 12ð�1þ xÞc1c2ð2ð1þ xÞ þ x2ð�11þ 7xÞc2ÞÞ
þ 8yc2ð�6x2c2

1 þ 2x2ð�4þ 13xÞc1c2 þ c2ð16ð�1þ x2Þ þ x2ð8� 52xþ 35x2Þc2ÞÞ
þ y2ð9x4c4

1 � 6x4ð�4þ 5xÞc3
1c2 þ 4ð�1þ xÞx2c2

1c2ð�12ð1þ xÞ þ x2ð2þ 61xÞc2Þ
þ 8x2c1c

2
2ð8� 44x� 8x2 þ 26x3 þ x2ð�4þ 111x� 192x2 þ 85x3Þc2Þ

þ 8c2
2ð8ð�1þ x2Þ2 þ x2ð�8þ 88x� 45x2 � 52x3 þ 35x4Þc2

þ 2ð�1þ xÞ2x4ð1� 35xþ 25x2Þc2
2ÞÞ.
We note from (2.10) and (3.6) that
k�2Lð0; n;mÞ ¼ lim
k!0

1

k
½rji�nimj ¼ lim

k!0

d

dk
rþij nimj ¼A�

jilknjnlmimk; ð3:10Þ
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where use has also been made of (2.14) and (3.5). It is then seen that the strong ellipticity condition (2.15)
applied to the ‘‘�’’ phase is given by
Lð0; n;mÞ ¼ 1� 4k6n4
1ðc1 þ 2ð�1þ k2Þc2Þ þ n2

1ðð�2k4 þ 6k6Þc1

þ ð�1þ k2Þð1þ k2 þ 2k4ð�1þ 5k2Þc2ÞÞ > 0. ð3:11Þ
The boundary of strong ellipticity is given by L(0, n,m) = 0. The strong ellipticity for the ‘‘+’’ phase (i.e.,
the kink band) is dependent on k; we shall discuss how it can be verified numerically later.

At this juncture, it is appropriate to discuss the choice of the material constants c1 and c2. First, it follows
from (3.3) that for uniaxial extension in the fibre direction (which is chosen to be in the x1-direction) we
have
p11 ¼ kþ 2c1kðk2 � 1Þ þ 2c2kðk2 � 1Þ2 � k�3;
which, for small jk � 1j, yields
p11 ¼ 4ðc1 þ 1Þðk� 1Þ þOððk� 1Þ2Þ.

Thus, for a physically realistic response, we impose the condition
c1 > �1. ð3:12Þ

Next, guided by existing experimental evidence, we require our model to predict that fibre-kinking will not
take place in uniaxial extension. Thus, we require strong ellipticity to be satisfied for all k P 1. We view
L(0, n,m) as a quadratic function of n2

1 defined in the interval n2
1 2 ½0; 1�. This function equals 1 at n2

1 ¼ 0 and
k4f1þ 2c1ðk2 � 1Þ þ 2c2ðk2 � 1Þ2g ð3:13Þ

at n2

1 ¼ 1. It is easy to show that the expression in (3.13) is positive for all k P 1 if and only if
c2 P 0; c1 > �
ffiffiffiffiffiffiffi
2c2

p
. ð3:14Þ
There is the possibility that L has a local minimum in the interval 0 < n2
1 < 1, but this will occur only if the

following three conditions are simultaneously satisfied:
� c1 � 2ðk2 � 1Þc2 > 0; ð3:15Þ
ð�2k4 þ 6k6Þc1 þ ð�1þ k2Þð1þ k2 þ 2k4ð�1þ 5k2Þc2Þ < 0; ð3:16Þ
� 2k4ð1þ k2Þc1 � ð�1þ k2Þð�1� k2 þ 2k4ð1þ 3k2Þc2Þ > 0. ð3:17Þ
The expressions in the three conditions above correspond to the coefficient of n4
1 in L and the derivatives of

L with respect to n2
1 at n2

1 ¼ 0; 1. When these conditions hold, we require the local minimum to be positive
for k P 1, that is
1þ ð2k4ð�1þ 3k2Þc1 þ ð�1þ k2Þð1þ k2 þ 2k4ð�1þ 5k2Þc2ÞÞ
2

16k6ðc1 þ 2ð�1þ k2Þc2Þ
> 0. ð3:18Þ
It does not seem possible to find the precise necessary conditions on c1, c2 that ensure the satisfaction of
(3.18) for k P 1. But it is clear from (3.18) that a sufficient condition is c1 P 0. Summarizing all the above
considerations, we impose the conditions
c1 P 0; c2 P 0; ð3:19Þ

which ensure that the strong ellipticity condition cannot be violated for all k P 1.

We now proceed to discuss the solutions of (3.9). The equation L(0, n,m) = 0 from the first factor in (3.9)
corresponds to the trivial solution k = 0 and should be neglected in our construction of stable kinked solu-
tions. Solving the equation f ðk2; n2

1Þ ¼ 0 from the second factor, we obtain
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c2 ¼
�1þ n2

1 � k4n2
1 � 2k4ð�1þ k2Þn2

1c1

2k4ð�1þ k2Þ2n2
1

;

which is always negative for 0 6 n2
1 6 1, violating our assumption (3.19)2. Thus, the second factor is con-

veniently dismissed under the assumptions (3.19) and Eq. (3.9) reduces to
gðk2; n2
1Þ ¼ 0. ð3:20Þ
In Fig. 2, we have shown the solution of (3.20) together with the boundary of strong ellipticity obtained
from L(0, n,m) = 0 for c2 = 4.5 and c1 = 0, 0.01, 0.02, 0.0251. We find that for c2 = 4.5, the closed curve
representing the solution of (3.20) shrinks as c1 is increased gradually until it completely disappears at
about c1 = 0.039. A similar pattern is observed when c2 = 5 in which case a solution only exists up to
c1 = 0.38 approximately. Also, we find that for each fixed c2, as c1 is increased, strong ellipticity begins
to be violated by the deformation in the kink band before the solution to (3.20) described above ceases
to exist. For instance, for c2 = 4.5, this upper limiting value of c1 is approximately 0.02512.

Take c1 = 0 as an example. Fig. 2 shows that as k is decreased from unity, a kink can form when k2

reaches 0.8065. Corresponding to this stretch value we have n2
1 ¼ 0.4817. The corresponding value of k

is the common root of (3.7) and (3.8). It can be deduced from (3.7) and (3.8) that if (n1,n2,k) is a solution,
then so are (�n1,n2,�k), (�n1,�n2,k) and (n1,�n2,�k), but the latter three solutions can be obtained from
the first solution by rigid-body rotations. Thus, without loss of generality, we shall focus on the solution
with n1 P 0, n2 P 0 which correspond to the case shown in Fig. 1. For c1 = 0, we obtain
n1 ¼ 0.6940; n2 ¼ 0.7199; k ¼ �0.1337. ð3:21Þ

The kink orientation angle is given by b ¼ tan�1ðn2=n1Þ and the fibre direction inside the kink band is char-
acterized by the angle a ¼ tan�1ðF þ21=F þ11Þ. We have
b � 46.0	; a � 3.9	. ð3:22Þ
The solution of (3.20) (solid line) and the boundary of strong ellipticity given by L(0,n,m) = 0 (dashed line, inside which the
ellipticity condition is violated) when c2 = 4.5 and c1 takes the four different values shown in the plots.



Fig. 3. The solution of (3.24) (solid line) and the boundary of strong ellipticity (dashed line, above which the strong ellipticity
condition is violated) when c1 = 1, c2 = 0.

Y.B. Fu, Y.T. Zhang / International Journal of Solids and Structures 43 (2006) 3306–3323 3315
For the other three values of c1 shown in Fig. 2, we obtain
c1 ¼ 0.01 : n1 ¼ 0.6982; n2 ¼ 0.7159; k ¼ �0.1127; b ¼ 45.7	; a ¼ 3.3	;

c1 ¼ 0.02 : n1 ¼ 0.7031; n2 ¼ 0.7111; k ¼ �0.08778; b ¼ 45.3	; a ¼ 2.6	;

c1 ¼ 0.0251 : n1 ¼ 0.7060; n2 ¼ 0.7082; k ¼ �0.07257; b ¼ 45.1	; a ¼ 2.1	.

ð3:23Þ
We observe that for the case c1 5 0, c2 = 0, which has previously been studied by Merodio and Pence
(2001a,b), Eqs. (3.7) and (3.20) would yield
n2
1 ¼

1

1� ð1� 2c1Þk4 � 2c1k
6
; 2n2 þ kn1 ¼ 0; ð3:24Þ
and the strong ellipticity condition would be represented by
Lð0; n;mÞ ¼ 1þ ð�1þ ð1� 2c1Þk4 þ 6c1k
6Þn2

1 � 4c1k
6n4

1 > 0. ð3:25Þ

It follows from (3.24) that kink-band formation is possible only if c1 > 1/2 and for
k2
6 1� 1

2c1

. ð3:26Þ
When the equality in (3.26) holds, we have n2
1 ¼ 1 and L(0, n,m) = 0, k = 0, see Fig. 3. Thus, as k is de-

creased from unity, a kinked solution becomes possible when k2 reaches 1 � 1/(2c1), but the kinked solution
has zero amplitude and violates the strong ellipticity condition. This implies that this model does not pre-
dict a fully developed stable kink.
4. Interfacial stability test

The primary kinked deformation determined in the previous section is a stationary point of the energy
functional with respect to perturbations of (i) the displacement field, (ii) the kink position in the current
configuration, and (iii) the kink position in the reference configuration (as ensured, respectively, by the sat-
isfaction of the equilibrium equation (2.5) and the jump conditions (2.6) and (2.9)). However, it is not yet
known whether such a two-phase deformation is an energy minimizer. If it is observed experimentally that
the kink band which we are trying to model is stable at least with respect to small-amplitude perturbations,
we must make sure that the associated deformation is a local energy minimizer. It is generally difficult to
give precise necessary and sufficient conditions for a two-phase deformation to be a local energy minimizer
with respect to all possible perturbations/variations. The best that we can do is to test the stability of the
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two-phase deformation against some known necessary conditions for stability, and if any such necessary
condition is violated, we can then immediately conclude that the deformation is not an energy minimizer.
We have pointed out earlier that satisfaction of the ellipticity condition is a necessary condition for stability
with respect to Weierstrass-type perturbations. In this section, we shall consider stability with respect to
interfacial perturbations.

We first consider a general finite incompressible elastic body that occupies the region X in its reference
configuration. We assume that oX = Su [ St where Su is part of oX where displacement is prescribed and St

is where a dead-load surface traction �t is prescribed. The resulting deformation field x = x(X, t) is a kinked
deformation with X divided into a core region X+ and an outer region X� = XnX+, the kink surface being
denoted by Sp. The t in x(X, t) is a time-like variable and is introduced to facilitate calculation of first and
second variations of the energy functional. We shall identify x(X,0) with the primary kinked deformation
x(X) given by (2.1) and write
u ¼ _xðX; 0Þ; ð4:1Þ

where a superimposed dot denote partial differentiation with respect to t and u can be viewed as an incre-
mental displacement field that is superimposed on the primary kinked deformation. We assume that the
kink is defined by
X ¼ Yða; tÞ; ð4:2Þ

where a = {a1,a2}T parameterizes the kink.

The total energy corresponding to this kinked deformation is then given by
EðtÞ ¼
Z

Xþ[X�
W ðFÞdV �

Z
St

�t � xdA. ð4:3Þ
Due to the propagation of the kink from Y(a1,a2, t) to Y(a1,a2, t + dt) alone, the energy would experience
an increment
Z

Sp

½W �fYða; t þ dtÞ � Yða; tÞg �NdAþ h:o:t: ¼
Z

Sp

½W � _Y �Ndt dAþ h:o:t:;
where h.o.t. denotes higher order terms, and a superimposed dot denotes partial differentiation with respect
to t. Thus,
dE
dt
¼
Z

Xþ[X�

oW
oF iA

_xi;A dV þ
Z

Sp

½W � _Y �NdA�
Z

St

�t � _xdA. ð4:4Þ
Differentiating the constraint detF = 1 with respect to t, we obtain
trð _FF�1Þ ¼ 0; trð€FF�1 þ _FF�1 _FF�1Þ ¼ 0. ð4:5Þ

Multiplying (4.5)1 by �p and adding it to the first integrand in (4.4), we obtain, after replacing �t in the last
integrand by pN and applying the divergence theorem,
dE
dt
¼
Z

Xþ[X�
�piA;A _xi þ

oW
oF iA

� pF �1
Ai � piA

� �
_xi;A

� 	
dV þ

Z
Sp

piBNB½ _xi� þ ½W � _Y AN A


 �
dA. ð4:6Þ
The kink in the current configuration is given by x = x(Y, t). From the fact that its velocity and acceleration
must be continuous across the kink surface, we obtain
½ _xi þ xi;A
_Y A� ¼ 0; ½€xi þ 2 _xi;A

_Y A þ xi;A
€Y A� ¼ 0. ð4:7Þ
The ½ _xi� in the second integral in (4.6) can then be expressed in terms of _Y A with the aid of (4.7)1. Note that
the components _xi;A of _F are not all independent but are subjected to the constraint (4.5)1. Assume that F �1

11

is nonzero. We may choose p such that
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oW
oF 11

� pF �1
11 � p11 ¼ 0. ð4:8Þ
Then _xi;A ði 6¼ 1;A 6¼ 1Þ and _xi may be chosen arbitrarily, and _F 11 is determined by (4.5)1. Thus, as we ex-
pected, by setting the first variation dE/dt in (4.6) to zero we obtain the equilibrium equation (2.5), the con-
stitutive relation (2.4) and the jump condition
ð½W �dAB � piB½F iA�ÞNB ¼ 0;
which reduces to (2.9) when (2.6) and (2.7) are used.
To derive an expression for the second variation of E, we now return to (4.4). We define a vector-valued

function /(X, t) through
/ðX; tÞ ¼
0 on oX;
_Y on X ¼ Yða; tÞ.

�
ð4:9Þ
The above definition implies
/AðYða; tÞ; tÞ ¼ _Y A; _/A ¼ €Y A � /A;B/B. ð4:10Þ

It then follows that
Z

Sp

W � _Y �NdA ¼
Z

Sp

W �/ �NdA ¼
Z

oX�
W �/ �NdA ¼

Z
X�

o

oX A
ðW /AÞdV .
Similarly, we have
Z
Sp

W þ _Y �NdA ¼ �
Z

Xþ

o

oX A
ðW /AÞdV .
Thus, (4.4) can be written as
dE
dt
¼
Z

Xþ[X�

oW
oF iA

_xi;A þ
o

oX A
ðW /AÞ

� 	
dV �

Z
St

�t � _xdA. ð4:11Þ
Differentiating (4.11) again with respect to t and arguing in the same manner as that leading from (4.3) to
(4.4), we obtain
d2E
dt2
¼
Z

Xþ[X�

o2W
oF iA oF jB

_xi;A _xj;B þ
oW
oF iA

€xi;A þ
o

oX A

oW
oF jB

_xj;B/A þ W _/A

� �
þ
Z

Sp

oW
oF iA

_xi;A þ W ;A/A þ W /A;A

� 

_Y �NdA�

Z
St

�t � €xdA. ð4:12Þ
Applying the divergence theorem to the third term in the first integral and noting that on the outer bound-
ary /A = 0, _/A ¼ 0, we obtain
d2E
dt2
¼
Z

Xþ[X�

o2W
oF iA oF jB

_xi;A _xj;B þ ðpiA þ pF �1
Ai Þ€xi;A

� 	
dV þ

Z
Sp

½W _/A�NA dA

þ
Z

Sp

½2ðpiA þ pF �1
Ai Þ _xi;A þ W ;A/A þ W /A;A�/BNB dA�

Z
St

�t � €xdA; ð4:13Þ
where we have also used (2.4)2 to eliminate the first order derivative of W. The second order derivative of W
in (4.13) can be eliminated using
_piA ¼
o

2W
oF iA oF jB

_xj;B � _pF �1
Ai þ pF �1

Aj F �1
Bi

_F j;B
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obtained from (2.4)2, and the last term in (4.13) can be eliminated with the aid of the following expression:
Z
St

�t � €xdA ¼
Z

St

pN � €xdA ¼
Z

Xþ[X�

o

oX A
ðpiA€xiÞdV �

Z
Sp

½piANA€xi�dA

¼
Z

Xþ[X�
piA€xi;A dV �

Z
Sp

piAN A½€xi�dA.
With the further use of (4.5), (4.7)2, and (4.10)2 Eq. (4.13) may be reduced to
d2E
dt2
¼
Z

Xþ[X�
_piA _xi;A dV þ

Z
Sp

f½2ðpiA þ pF �1
Ai Þ _xi;A/BN B þ W ð/B;B/ANA � /A;B/BN AÞ�

� 2piANA½ _xi;B�/BgdA. ð4:14Þ
The volume integral above can be converted into a surface integral by first writing _piA _xi;A as ð _piA _xiÞ;A and
then applying the divergence theorem. On evaluating the resulting expression at t = 0 and making use of
(4.1), we obtain the following expression for the second variation of the energy functional:
d2E � d2E
dt2

����
t¼0

¼
Z

Sp

f½ _piAui�NA þ ½2piAui;A�/BNB þ ½W �ð/B;B/AN A � /A;B/BN AÞ � 2piANA½ui;B�/BgdA;

ð4:15Þ

where here and hereafter / and _p are evaluated at t = 0. This expression has previously been obtained by
Fu and Freidin (2004) using a different procedure in their studies of stress induced phase transformations.

To facilitate computations to be carried out later, we now rewrite the above expression for the second
variation by transforming the variables of integration from (XA) to (xi). To this end, we introduce
vij ¼ _piAF jA; rij ¼ piAF jA; wi ¼ F iB/B; C ¼ dA
da

/ANA; ð4:16Þ
and note that
N A ¼
da
dA

F iAni; ½wi� ¼ ciC; ½ui� ¼ �ciC; ð4:17Þ
where use has been made of (2.7), (2.13) and (4.7)1 evaluated at t = 0, and dA and da are two corresponding
area elements in the undeformed and kinked configurations, respectively. With the use of these relations,
(4.15) can be rewritten as
d2E ¼
Z

sp

f½vijnjui� þ 2C½rijui;j� þ ½W �ðwj;jC� wi;jwjniÞ � 2rijnj½ui;kwk�gda; ð4:18Þ
where sp is the image of the kink surface relative to the coordinate system (xi). We note that although wi is
discontinuous across the kink surface, the expressions wj,jC and wi,jwjni are both continuous across the kink
surface since their counterparts in (4.15) are clearly continuous.

We now specialize to the plane-strain deformation considered in the previous section. In this case, we
introduce new variables y1, y2 through
y1 ¼ m � x; y2 ¼ n � x;

and without loss of generality we assume that the kink corresponds to y2 = 0. A straightforward manipu-
lation followed by the use of (2.9) and (3.5) shows that (4.18) in this case reduces to
d2E ¼
Z

sp

½u � vn� þ 2C
ou

oy1

� rm

� 

� 2kC

ou�

oy1

� rnþ ½W � o

oy1

ðm � wþCÞ
� 	

da. ð4:19Þ
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Finally, we assume that the perturbations/variations take the following normal-mode form:
C ¼ ceiy1 þ c:c:; uðXÞ ¼ zðy2Þeiy1 þ c:c:; ð4:20Þ
where c and z are to be determined, and c.c. denotes the complex conjugate of the preceding term. The
amplitude function z(y2) is required to satisfy the continuity condition
½z� ¼ �kmc; ð4:21Þ
obtained from (4.17)3, the equilibrium equation vij,j = 0 and the decay condition z(±1) = 0.
We now introduce the surface-impedance tensors M± through
vþn ¼ cMþ
zþeiy1 þ c:c:; v�n ¼ �M�z�eiy1 þ c:c:; ð4:22Þ
where a superimposed hat signifies complex conjugation. The surface-impedance tensor was first introduced
by Ingerbrigtsen and Tonning (1969) and it has played an important role in the development of surface-
wave theory and theory of anisotropic elasticity. It has an explicit integral representation in terms of the
elastic moduli defined by (2.14) even in the most general case; see Barnett and Lothe (1973) and Fu (in
press) for the formulae for compressible and incompressible materials, respectively. For plane-strain defor-
mations, explicit formulae are given by Fu (2005) and Fu and Brookes (in press) for incompressible and
compressible materials, respectively.

The integral in (4.19) is now replaced by an average over one period of the normal-mode variation:
d2E ¼ 1

2p

Z 2p

0

½u � vn� þ 2C
ou

oy1

� rm

� 

� 2kC

ou�

oy1

� rn

� 	
dy1. ð4:23Þ
On substituting (4.20) and (4.22) into (4.23), we obtain
1

2
d2E ¼ ẑ� � Pz� þ cẑ� � gþ ĝ � z�ĉþ jcj2c �cMþ

c ¼ ŵ �Hw; ð4:24Þ
where
P ¼ cMþ
þM�; H ¼

P g

ĝT c �cMþ
c

 !
; w ¼

z�

c

� �
;

g ¼ �cMþ
c� iðb� krnÞ; b ¼ ½rm� ¼ k½rc�.

ð4:25Þ
Fu and Freidin (2004) did not apply the variable transformation (XA) ! (xi) to the integral in (4.15). As
a result, their final expression for the second variation was in terms of f, N and p. We have verified that their
expression (6.18) can be converted to our expression (4.24) with the aid of (4.16) and (4.17).

It is well-known that when the strong ellipticity condition is satisfied, the surface-impedance matrices,
and hence P, are Hermitian. It then follows that the kinked solution is stable with respect to the interfacial
perturbations considered if all the eigenvalues of the Hermitian matrix H are positive and is unstable if at
least one of them is negative.

As an illustrative example, we now specialize to the material model (3.2). We have
rij ¼ Bij þ 2fc1ðI4 � 1Þ þ c2ðI4 � 1Þ2gaiaj � pdij; ð4:26Þ
Ajilk ¼ dikBjl þ 4fc1 þ 2c2ðI4 � 1Þgajaialak þ 2fc1ðI4 � 1Þ þ c2ðI4 � 1Þ2gdikajal. ð4:27Þ
We see from (4.25)2 that to compute H it only remains to find an expression for the two surface-impedance
matrices (tensors). It is known that such matrices are invariant with respect to rotations of n and m in
the x1x2-plane (see, e.g., Mielke and Fu, 2004). This means that for the purpose of computing the
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surface-impedance matrices, we may simply take m = (1, 0)T, n = (0, 1)T. Thus, the explicit formulae given
by Fu (2005) can directly be applied here. We have
M ¼
M1 M3 þ iM4

M3 � iM4 M2

� �
; ð4:28Þ
and
M1 ¼ d22

ffiffiffiffiffiffiffiffiffi�w2

p
; w2 ¼ 2x1=3 cosð/þ 2p=3Þ � 2

3
r; M4 ¼

M2
1

2d22

þ b3

2
;

M3 ¼
d22

M1

b1

2d22

M2
1 þ

b1b3

2
� b4

� �
; M2 ¼

1

d22

M1M4 � b2M1 þ b1M3;

ð4:29Þ
where
r ¼ ð2d12d22 � 6d2
26 þ 4d66d22Þ=d2

22;

s ¼ f4d16d2
22 � 4d26ðd12d22 � 2d2

26 þ 2d22d66Þg=d3
22;

h ¼ fd11d3
22 þ d26ð�4d16d2

22 þ 2d12d22d26 � 3d3
26 þ 4d22d26d66Þg=d4

22;

x ¼ 1

27
ð12hþ r2Þ

3
2; cos 3/ ¼ 27

2
ð12hþ r2Þ�

3
2

2

27
r3 þ s2 � 8

3
rh

� �
;

b1 ¼ �2d26=d22; b2 ¼ d12=d22;

b3 ¼ 4d2
26=d22 � 4d66; b4 ¼ 2d16 � 2d12d26=d22;

ð4:30Þ
and
d11 ¼A1111; d22 ¼A2121; 2d26 ¼A1121 �A2122;

d12 ¼ �A1122 � p; 2d16 ¼A1222 �A1112; 4d66 ¼A1111 þA2222 � 2A1122 þ 2p.
To find M+ or M�, we simply replace the Ajilk; p above by Aþ
jilk; p

þ or A�
jilk; p

�, respectively.
We have yet to verify that the deformation in the kink band also satisfies the strong ellipticity condition.

One way to verify this is to use the fact the M+ is Hermitian only if the strong ellipticity condition is sat-
isfied. Alternatively, the strong ellipticity condition is satisfied only if the expression for cos 3/ given by
(4.30) takes values in [�1,1]. Using this latter criterion, we find that when c2 is fixed at 4.5 and k in
(3.4) taken to correspond to the right noses of the closed curves in Fig. 2, the strong ellipticity is satisfied
for c1 up to approximately 0.02512.

For the four sets of material parameters used in Fig. 2, the three eigenvalues of H are found as follows:
c1 ¼ 0 : ð0.003032; 0.4702; 0.6880Þ;
c1 ¼ 0.01 : ð0.001815; 0.4573; 0.5797Þ;
c1 ¼ 0.02 : ð0.0008577; 0.3155; 0.4497Þ;
c1 ¼ 0.0251 : ð0.0004845; 0.1894; 0.3706Þ.
Thus, for c2 = 0.45, 0 6 c1 < 0.0251, the kinked solution is stable with respect to interfacial perturbations.
5. Conclusion

In this paper, we have presented a rational continuum mechanical framework for modelling kink-band
formations. We take the point of view that in an ideal situation when the material is free from imperfec-
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tions, formation of kink bands is a discontinuous, dynamic process and can be induced by a large amplitude
perturbation well before the strong ellipticity condition is violated. We also believe that a fully developed
kink surface is a strong discontinuity across which the deformation gradient generally suffers a finite jump
which cannot adequately be described by an incremental theory. This point of view seems to be consistent
with the available experimental results; see, for instance, Kyriakides et al. (1995), Moran et al. (1995),
Moran and Shih (1998), and Wadee et al. (2004). In contrast with most of the previous theoretical models,
we use the Maxwell relation as an equilibrium condition. As a result, once the strain–energy function is
chosen, the kink propagation stress, the kink orientation angle and the fibre direction within the kink band
are all determined by our theoretical model. A good theoretical model for a fully developed stable kink
band should also satisfy certain stability criteria. We have presented simple formulae that can be used to
test the strong ellipticity condition and stability with respect to interfacial perturbations.

In this paper, our focus has been on the explanation of a general methodology for modelling kink-band
formation using a simple form of the strain–energy function. We observe that the numerical results (3.23)
from our illustrative example compare poorly with the empirical relation
b ¼ a
2
; ð5:1Þ
and the usually reported result b � 5–15�. We note, however, that (5.1) was only advanced for composites
that are not only incompressible but also inextensible along the fibre direction (Chaplin, 1977). We expect
that the predicted values of a and b would be strongly dependent on the form of the strain–energy function
used. It would be of interest to check, under the present theoretical framework, whether (5.1) is an exact
relation for the type of composites for which it is intended. Ultimately, for any given unidirectional fi-
bre-reinforced composite, we would like to build a model (that is, to find a strain–energy function) that
can predict what have been observed in experiments and what might be expected in other loading condi-
tions. These tasks will be carried out in future studies.
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